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The plastic deformation of continuous media can be accompanied by a 

change of volume. The associated flow law [d determines an irreversible 
change of volume which depends on the shape of the yield surface. 

The “associatedn compressibility of a material is 8 consequence of 
the shearing deformations and is in no way determined by the change of 
volume due to hydrostatic pressure. 

Boils and related physical media undergo an irreversible change of 
volume when subjected to triaxial compression; this was studied in de- 
tail, for example, in [21. In the note [31, consideration was given to 
a modification of a theorem of von Mises according to which it was 
possible to determine the relation between the first invariants of the 
tensors of stress and strain independently of the form of the yield sur- 
face. However, the equations appearing in the stress-strain law pro- 
posed in 131 have a serious drawback: the characteristic surfaces of the 

equations determining the states of stress and strain turn out to be 
different in the general case. Consequently, the boundary conditions, 
which are given on prescribed parts of the surface of the body, deter- 
mine different regions of existence of the solutions for the stresses 
and the displacement velocities. These regions, according to 131, co- 

incide only for materials whose yield condition does not depend on the 
first invariant of the stress tensor. 

Below, we will derive general relations between the States of Stress 
and strain for arbitrary isotropic, ideally plastic media, leading to 
the previously given dependence of the plastic volumetric deformation 
on the hydrostatic pressure and for which the characteristic SUrfaCeS 
of the equations determining the states of stress and strain are 
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identical. 

1. We will assume that the yield condition of the material has been 

given in the form 

@, 6, Zt, Zs) = 0 (i = 1, . . ., n) (1.1) 

where a is the first invariant of the stress tensor, and 12, 2, are the 

second and third invariants, respectively, of the stress deviator. 

According to the associated flow law of von Mises. we have 

(1.2) 

where eij are the components of the strain tensor, and in (1.2) we have 

summation over the index k. From condition (1.2) it can be found that 

(1.3) 

(i-4) 

Here and henceforth, the components of a deviator are denoted by a prime. 

It is to be observed that 

dhk= 0 when a,,<0 (i-5) 

According to [31, if a dependence e = q(a) has been given, then the 

equations of the law connecting eij - Oij can. by condition (1.1). be 

written down in the form 

deij = dh e = cp (0) 
dq 

de = z ds, (1.6) 

Thus, the difference in the stress-strain relation in both cases con- 

sists in the determination of the law of compressibility (1.4) and (1.6). 

In the following it will be convenient to make use of the expressions 

for the components of the strain rate 

deij “k 
eii = dt 9 Pk = -ji 

It is well-known that the characteristic surfaces of equations, de- 

termining the states of stress and strain according to (1.3) and (1.4), 

are identical. 

However, in the case of equations (1.3) and (1.6) the characteristic 
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surfaces of the equations determining the state of strain agree with 
those of the equations determining the state of stress only if the func- 
tions 0, do not depend on cr. 

We will show this with the example of states of stress and strain cor- 
responding. in the space of principal stresses cl, og* 03, to the edge 
of a curvilinear pyramid, the equation of which is given in the form 

where vv, av are the shear and normal stress, resPectivelY, acting on 
the area with normal v. 

We will consider some edge whose equation will be written in the 
form C41 

Passing to the components in a Cartesian system of coordinates, rela- 
tions (1.8) will be written down in the form 

[c, - g fc)l Lo, - g WI - ZG = 9 

[o,-g(c)l[QZ-g(c))l-Zy~=O 

I$ - g (c) 1 by--- g (41 - c*“, = 0 (1.9) 

where 

If we use relations (1.9) as the plastic potential, we will find 

Eliminating the undetermined multipliers pi and changing over to the 
components of the displacement velocity u, V, m, equations (1.10) can be 
written in the form 
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The characteristic surfaces x(x, y, z) of the system of equations 

(1.11). (1.12) satisfy the equation 

(1.13) 

Here, ni are the direction-cosines of the principal stress (~3 in the 
space of principal stresses. 

Obviously, for the case of a stress-strain relation determined by 

equations (1.6). equations (1.11) remain valid but in place of condi- 

tion (1.12) we will have 

The characteristic surfaces X(X, y, z) of the system of equations 
(1.11) and (1.14) satisfy the equation 

F f2Ff - (grad x)‘] = 0 (US) 

2. It is essential to note that the compressibilities determined by 
expressions (1.4) and (1.6) are of completely different origin. The com- 
pressibility determined by equation (1.4) is connected essentially with 
the change of shape of the material. As a matter of fact, in relations 

(1.3) and (1.4) the quantity d?t, # 0 only in the case, if ak = 0, 
d@h,‘dt = 0. Consequently, if the material is subjected to a hydrostatic 
pressure alone, then (0, < 0, dQk = 0 always and, as a consequence of 
(1.3) and (1.4). the material will not be able to acquire any residual 
change of volume. 

The compressibility determined by equations (1.6), on the contrary, 
is not at all connected with the change of shape and can be determined 
from experiments on uniform, triaxial compression. 

From the consideration of equations (1.12) and (1.14). it follows 
that equation (1.4) has basic influence on the form of the character- 
istic surfaces x(x, y, z). On the other hand. the form of the function 
q(a) in (1.6) has no influence whatsoever on the form of the character- 
istic surfaces and only affects the form of relations along the charac- 
teristics. Relations (1.4) and (1.0) have invariant character. If the 
compressibility of the material is determined in the form 

(2.1) 

and this relation is combined with equation (1.3). the resulting rela- 
tion firstly will determine the dependence e = cp(a) when there is a uni- 
form state of triaxial pressure, and secondly the characteristic 
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surfaces of the equations determining the states of stress and strain 
will be identical. For the above-considered case of the edge of a curvi- 
linear pyramid it is. by virtue of (2.1), necessary to add to conditions 
(1.11) the condition 

(2.2) 

It is easily seen that the additional term (dq/da)da affects only 
the relations along the characteristics. 

We shall now carry out some transformations. For elastic-plastic 
media, one assumes 

deii = de,; + de$ (2.3) 

where the indices e and p denote the components of the elastic and 
plastic strain, respectively. 

The components of the elastic strain satisfy Hooke’s law. The change 

of volume will be composed of the two parts 

de = de” f deg (2.4) 

We note further that when the elastic strains in the body are 
neglected, there is no essential loss of generality in setting du/dt =O. 

Therefore, the presence of the compressibility (1.6) in relation (2.1) 
does not make itself evident in the size of the limit loads. 

It is to be observed that the expression el + eg + e3 is the scalar 

Product of the displacement vector e = e,i + e2j + e3k and the vector 
r = i + j + k directed along the line equally inclined to the axes of 
the principal stradns el, e2, es. Here, i, j, k are unit vectors 
directed along the axes of el, e2, es. Similarly, for the increments and 
rates of strain. 

From relations (2.1) it follows that: for ideally plastic media, the 

material of which is capable of acquiring an irreversible change of 
volume under uniform triaxial compression. the velocity vector of the 

plastic deformation is not normal to the yield surface. 

As is known, the postulate of Drucker Es.61 leads to the fact that 
the vector of the plastic strain rate lies along the gradient to the 
yield surface. However, Drucker’s inference is based essentially on the 
assumption that in the zone bounded by the yield surface only elastic 
strains take place. In the present case it can be assumed that irre- 
versible plastic strains can occur irrespective of whether the state of 
stress corresponds to the yield surface or not. 
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If Drucker’s postulate is formulated only in regard to the components 
of the deviator of the strain rate, and one proceeds from the increment 
of work 6W = oij&eij’, it can be found as a consequence that the compo- 
nents of the strain-rate deviator are proportional to the partial de- 
rivatives with respect to the components of stress of the yield condi- 
tion, which depends on the second and third invariants of the stress 
deviator (the first invariant o in this case enters in the yield condi- 
tion as a parameter). This fact is expressed by equations (1.3). 
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